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Scattering of classical light by atomic clouds induces photon-mediated effective long-range interac-
tions between the atoms and leads to cooperative effects even at low atomic densities. We introduce
a novel simulation technique that allows us to investigate the quantum regime of the dynamics of
large clouds of atoms. We show that the fluorescence spectrum of the cloud can be used to probe
genuine quantum cooperative effects. Signatures of these effects are the occurrence, and the scaling
behavior, of additional sidebands at twice the frequency of the classical Mollow sidebands, as well
as an asymmetry of the Mollow triplet.

Our understanding of the quantum dynamics of many-
body systems has benefited from a number of recent
achievements. On the experimental side, cold atom sys-
tems and ion traps have reached an unprecedented level
of control and allow for the emulation of a large vari-
ety of many-body Hamiltonians of interest, including the
possibility of tuning coupling parameters [1–4]. On the
numerical side, progress in the understanding of matrix
product state has boosted density matrix renormaliza-
tion group and other methods, applicable primarily to
one-dimensional quantum systems. Reliable simulations
of higher-dimensional systems are in general more diffi-
cult, and in many cases impossible.

A three-dimensional setting where many exciting dis-
coveries have been made, but also many open questions
remain, is light scattering by large clouds of atoms. The
classical, linear optics regime of such systems has been
extensively studied, and many-body effects, such as su-
perradiance [5, 6], modification of the radiation pressure
force [7, 8] or cooperative frequency shifts [9–13], were re-
ported. The effective coupling between the atoms in the
cloud, mediated by the photon field, turns out to be long-
ranged, and as a result cooperative effects occur even in
dilute clouds, including superradiance [14, 15], Dicke sub-
radiance [16], and spectral broadening [17]. The strength
of the cooperative effects depends in these cases on the
cloud optical thickness, not the spatial density.

Beyond the linear optics regime, saturation effects give
the atoms a nonlinear response to the electric field of the
light. When many atoms are simultaneously in the ex-
cited state, the classical coupling of these nonlinear os-
cillators leads, for example, to the modification of the
line shape of the atomic resonance [18]. Entering the
field of quantum optics, two-time correlations of the ra-
diated field provide information on the optical coherence
of the first kind g(1) and on the fluorescence spectrum.
For a single atom, saturation leads to the emergence
of the Mollow triplet, a trio of spectral lines of inelas-

tically scattered light, one around the laser frequency
and two symmetric ones shifted by the generalized Rabi
frequency [19, 20]; see Fig. 1 (left) for an illustration.
This redistribution of frequencies is iterated as two scat-
terers interact through their radiation [21, 22], which,
for dense atomic clouds, results in the presence of ad-
ditional sidebands at twice the Rabi frequency for pairs
of atoms closer than a wavelength [23]. In the many-
body case, quantum correlations become essential when
trying to understand the quantum features of the col-
lective response of the system. This quantum regime of
cooperative light scattering in free space is essentially
unexplored. The main obstacle for a quantum mechani-
cal treatment is, as usual, the exponential growth of the
Hilbert space with the number of atoms. Additionally,
and different from, e.g., optical cavities, no suitable col-
lective operators are known for describing the dynam-
ics effectively. A recent first study of quantum effects
in the light scattering by dilute atomic clouds made use
of perturbative techniques, valid in the regime of strong
driving, and was able to predict asymmetries in the scat-
tering spectrum, but no additional spectral lines beyond
those of a single atom [24].

In this Letter we report the discovery of quantum coop-
erative effects in light scattering by large dilute clouds of
atoms. We show theoretically that quantum correlations
building up in the cloud induce cooperative sidebands in
the many-body fluorescence spectrum at twice the Rabi
frequency, and also lead to a cooperative spectral asym-
metry in the Mollow triplet. Both effects scale with the
optical thickness, which is a hallmark of their coopera-
tive character. Investigating the angular dependence of
the scattering spectrum, we find that quantum coopera-
tivity is more easily detected at large scattering angles,
and not in the forward direction. These results provide
guidance on where to look for quantum cooperative ef-
fects in light scattering experiments on atomic clouds,
and are expected to be relevant also for neutral-atom op-
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tical clocks, Rydberg atoms, and other settings where
effective long-range interactions play a role.

This study of nonperturbative quantum effects in fairly
large three-dimensional atomic clouds became possible
by a novel simulation technique, combining a discrete
phase-space representation of spins [25, 26] with higher-
order semi-classical evolution equations [27] extended
to driven-dissipative Lindblad dynamics. The method
is highly accurate for higher-dimensional systems with
long-range interactions, and therefore a perfect fit for the
problem at hand.

Modelling the atomic cloud.—For our purposes the
cloud of atoms is modelled as an assembly of N two-
level systems at fixed, but usually random, positions ri
in three-dimensional space. Using a scalar light model,
which is valid for dilute clouds, each two-level system can
be described by Pauli spin operators σ± = (σx ± iσy)/2
and σz. This model provides a good description of di-
lute clouds of atoms cooled below the Doppler limit and
trapped in a magneto-optical or dipolar trap. Transi-
tions between the two levels of each atom are driven by
a classical planar-wave laser light-field of wave vector k0,
Rabi frequency Ω0, and detuning ∆0 = ω0−ωa from the
optical transition. The dynamics is then described by a
set of equations that couple the spin degrees of freedom
to the photon field [28]. Performing the rotating-wave,
Born and Markov approximations and eliminating the
photon degrees of freedom, equations of motion can be
derived for the atomic internal degrees of freedom in the
Heisenberg picture [24, 28],

dσ−j
dt

=

(
i∆0 −

Γ

2

)
σ−j +

iΩ0

2
eik0·rjσzj

+
Γ

2

N∑
m6=j

σzjσ
−
m(γjm − i∆jm), (1a)

dσzj
dt

=iΩ0

(
e−ik0·rjσ−j − h.c.

)
− Γ(1 + σzj )

− Γ

N∑
m6=j

(σ+
mσ
−
j (γjm + i∆jm) + h.c.), (1b)

where the coefficients

γjm =
sin(k0|rj − rm|)
k0|rj − rm|

, ∆jm =
cos(k0|rj − rm|)
k0|rj − rm|

(2)

describe the spatial dependence of the light-mediated
long-range coupling between the atoms, and Γ is the tran-
sition linewidth of the two-level atoms.

The quantity we want to study, and which is acces-
sible in light-scattering experiments, is the fluorescence
spectrum

S(ω) = lim
T→∞

lim
t→∞

∫ T

−T
dτg(1)(t, τ)e−iωτ , (3)

defined as the Fourier transform of the first-order optical
coherence

g(1)(t, τ) =
〈E(n̂, t)E†(n̂, t+ τ)〉
〈E(n̂, t)E†(n̂, t)〉

(4)

in the steady state [realized by the limit t → ∞ in (3)].
The optical coherence is defined in terms of the electric
field operator E which, in the far-field limit and emitted
in the direction of the normalized vector n̂, is given by

E†(n̂, t) ∝
N∑
j=1

σ−j (t)e−ikn̂·rj . (5)

From Eqs. (3)–(5) one can read off that the crucial non-
trivial ingredient for calculating the fluorescence spec-
trum are the two-time spin–spin correlation functions
〈σ+
j (t)σ−j (t+τ)〉, time-evolved under the evolution equa-

tions (1a) and (1b).
Numerical method.—An analytic calculation of the flu-

orescence spectrum S was reported in Refs. [21, 22] for
the case of two atoms pumped at resonance ωa. In that
work, sidebands at frequencies ωa ± 2Ω were shown to
rise in the spectrum, yet the effect is substantial only for
atoms closer than a wavelength. A similar effect was pre-
dicted for pairs of quantum dots [29]. Treating more than
two atoms is much harder. An exact numerical evalua-
tion of the evolution equations (1a) and (1b) is possible
for about a dozen atoms or so, but these numbers are
too small to investigate scaling behavior or extrapolate
to experimentally relevant system sizes.

Here we deal with these difficulties by developing a
simulation method for driven-dissipative quantum me-
chanical evolution equations. Our method builds upon a
simulation technique that makes use of a discrete phase-
space representation of the Pauli operators [25, 26], and
time-evolves phase space points as well as correlation co-
efficients according to semiclassical evolution equations
[27]. We developed these techniques further by extending
them to nonunitarily-evolving driven-dissipative systems,
and made the method applicable to the computation of
two-time correlation functions by making use of the quan-
tum regression theorem; see the Supplemental Material
for details. The main features of the method are: (i) The
use of semiclassical time-evolution equations makes this
method particularly suitable for systems with long-range
interactions and systems in higher spatial dimension. (ii)
The explicit incorporation of correlation coefficients in
the quasiclassical equations of motion allows for the ac-
curate computation of correlation functions; for N = 2
the exact results are recovered. (iii) The numerical cost
scales polynomially, not exponentially, with the system
size N ; hundred and more atoms can be treated.
Results.—We performed simulations for system sizes

N = 14 28, 48, 72 and 96 atoms at a fixed low den-
sity ρ. The atoms are placed at random in a spherical
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FIG. 1. (a) Fluorescence spectrum for a cloud of density
ρ/k3 = 0.1, driven at Ω0 = 20Γ at resonance (∆ = 0), for
N = 14, 28, 48, 72 and 96 atoms, with the inset showing
the behaviour of the peaks at ω ≈ 2Ω0. Amplitude of the
additional Mollow sidebands as a function of (b) the optical
thickness b0 for different densities (Ω = 20Γ, N = 72 and
∆ = 0) and (c) of the Rabi frequency (ρ/k3 = 0.1, N = 72

and ∆ = 0). The amplitude is defined as
∫ 2Ω0+δω

2Ω0−δω
|S−S1|dω,

where S1 is the single-atom spectrum, and δω a suitably cho-
sen integration range. The dash-dotted line in (c) refers to a
power-law fit (A2 ≈ 0.06(Ω/Γ)−1.4).

volume, but with the constraint of a minimal distance
of one fourth of the mean distance between neighbours,
such as to rule out unwanted noncooperative effects due
to accidentally close pairs of atoms. Fig. 1(a) shows the
numerically computed fluorescence spectra for various N ,
at fixed density and laser parameters. The three promi-
nent peaks in the plot at ω = 0 and ±Ω0 form the Mollow
triplet [19, 20]. The first main result of this Letter is the
observation of additional sidebands in the fluorescence
spectrum at ω = ±2Ω0. These sidebands are genuine
quantum effects, as they require the presence of quan-
tum pair correlations. Indeed if connected correlations
between different sites were absent and two-time correla-
tions would factorize, 〈σ±,zj σ±,zm 〉 = 〈σ±,zj 〉〈σ±,zm 〉 for j 6=
m, one would have 〈σ+

j (t)σ−m(t + τ)〉 = 〈σ+
j (t)〉〈σ−m(t)〉

in the steady-state regime, and in that case the inelas-
tic (ω 6= 0) spectrum would only depend on single-site
two-time correlations 〈σ+

j (t)σ−j (t + τ)〉. The factorizing

terms 〈σ±,zj 〉〈σ±,zm 〉 may modify the local Rabi frequency
experienced by each atom and inhomogeneously broaden
the single-atom Mollow triplet, but cannot give rise to
higher-order sidebands.

The novel sidebands are true cooperative effects. If
the sidebands were two-atom or few-atom effects, their
peak height would depend only on the spatial density.
In Figs. 1(a) and (b), however, we observe that the
sidebands grow with the number of atoms N even at
fixed density, and scale linearly with the optical thick-
ness b0 = 2N/(kR)2 rather than with the spatial density.
This effect can be attributed to the long-range nature of
the effective interactions (2) between the atomic internal

FIG. 2. Left: Fluorescence spectrum for an atomic cloud
of density ρ/k3 = 0.1, driven at Ω0 = 20Γ out of resonance
(∆ = −Ω0/2), and for scattering angles θ = 0, π/10, 3π/20,
π/5, 4π/5. The asymmetry of the sidebands is clearly visible.
Right: The asymmetry of the spectrum in the forward direc-
tion (θ = 0), quantified by (A−−A+)/(A+A+) where A± is
the amplitude of the sideband at ±Ω0, plotted as a function of
the optical thickness for different densities and system sizes.

degrees of freedom. The scaling with b0 is reminiscent of
cooperative phenomena in the linear optics regime [30],
but is here observed, for the first time to the best of
our knowledge, for a quantum cooperative phenomenon
in free space. Furthermore, although single scattering
processes may exhibit quantum optics interferences phe-
nomena [31], they cannot capture the additional side-
bands. These sidebands at ±2Ω0 can be understood as
the first step of a higher order harmonic generation pro-
cess, where the next orders could be studied by including
higher-order quantum correlations.

The second result of this Letter is the observation that
quantum cooperativity breaks the symmetry of the spec-
trum. The single-atom fluorescence spectrum is always
symmetric with respect to the frequency of the driving
light, independently of the detuning of the driving from
the atomic resonance [19]. For large atomic clouds it was
predicted that coherence effects may induce an asymme-
try of the Mollow sidebands in the forward scattering
direction [24]. Our simulations show a similar effect for
the scattering of detuned light, where the Mollow side-
bands at ω = ±Ω exhibit a significant asymmetry (Fig. 2
left). This asymmetry scales with the optical thickness
b0 (Fig. 2 right), which confirms the cooperative nature
of this effect. In the absence of quantum correlations the
spectrum, being composed of the sum of N symmetric
spectra, is necessarily symmetric, which confirms the gen-
uine quantumness of the observed asymmetry. However,
going beyond the prediction of Ref. [24], we here observe
that the asymmetry is also present outside the forward
lobe, i.e., for scattering angles θ ≥ 1/kR where diffuse
light dominates (Fig. 2 left). Surprisingly, the asymme-
try is inverted in the forward direction (θ < 1/kR) in
comparison with θ > 1/kR. Experimentally the asym-
metry of the standard Mollow sidebands, which reaches
∼ 30% in our simulations, should be relatively easy to
detect. The additional sidebands at ±2Ω0 are expected
to be more challenging, as their contribution to the total
radiated power is rather small.
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FIG. 3. Angular dependence of the fluorescence spectrum of
a cloud of N = 72 atoms with density ρ = 0.1k3, driven by
a field with Ω0 = 20Γ at resonance, which corresponds to a
saturation parameter s = 3200. The inset shows the elastic
and integrated inelastic spectra (Sel(θ) = S(ω = 0, θ) and
Sinel(θ) =

∫
ω 6=0

S(ω, θ)dω), respectively, as discussed in the
text.

In Fig. 3 we show the fluoresence spectrum as a func-
tion of the scattering angle θ and the frequency ω in
the regime of deep saturation, where most of the light is
expected to be scattered inelastically (ω 6= 0). In this
regime the portion of elastically scattered light for a sin-
gle atom goes as 1/s = (∆2

0 + Γ2/4)/2Ω2
0 at large Ω0,

s being referred as the saturation parameter, so most
of the light is scattered inelastically. We clearly observe
the quasi-isotropic inelastic Mollow triplet and higher or-
der sidebands. For the parameters considered, a strong
elastic component is particularly visible in the forward
direction (see inset), which we attribute to the construc-
tive interference of the elastic component of the electric
field in the forward direction (which, according to linear
optics, is expected to scale like N2 with the system size).
This indicates that signatures of quantum cooperativity,
which are intimately connected to inelastic scattering,
may be more easily detected at larger scattering angles,
and not in the forward direction. We note however that
in the forward direction the inelastic component exhibits
a small dip. The physical origin of this feature remains
to be understood.

Conclusions.—We have reported the discovery of sig-
natures of quantum cooperativity in the fluorescence
spectrum of large dilute atomic clouds. The rise of ad-
ditional sidebands at frequencies ±2Ω0 from the central
line, as well as the asymmetry in the spectrum of the
cloud driven out of resonance, are identified as proper
quantum effects that cannot occur in the absence of gen-
uine quantum correlations. Moreover, by analyzing pa-

rameter dependences and scaling properties, the cooper-
ative nature of the observed phenomena is revealed. Co-
operativity is ultimately related to the long-range char-
acter of the effective atom–atom interactions induced by
the photon field. The deficiency in inelastically scattered
photons in the forward cone (|θ| ≤ 1/kR) is particu-
larly interesting, because it implies that the forward di-
rection, which has long been considered a natural can-
didate for probing cooperative phenomena in the linear-
optics regime [32], may be less suitable for probing quan-
tum cooperative effects. Furthermore, while the second-
order optical coherence is usually considered the ideal
candidate for revealing the quantum nature of the light
scattering by atoms, with photon bunching [33] and anti-
bunching [34] as paradigmatic signatures, we show in this
Letter that the first-order optical coherence g(1) and the
associated fluorescence spectrum already show clear sig-
natures of quantum cooperativity. More generally, our
results suggest that the quantum optics regime of an op-
tically deep system is substantially richer than its single-
atom physics, and holds much promise for further stud-
ies of cooperative effects. This may become relevant for
neutral atom optical clocks or other long-range quantum
systems such as Rydberg atoms. To gain access to this
regime on the computational side, the simulation tech-
nique developed in this Letter, based on a truncation of
the hierarchy of correlations, proves to be a powerful tool.

The cooperative nature of the observed effects suggests
that dilute atomic clouds might be used as experimental
platforms for quantum-simulating plasmas, free electron
lasers, and other quantum long-range interacting systems
in which cooperativity plays an essential role.
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Supplemental Material

Here we describe a novel numerical method, developed
for calculating the fluorescence spectrum (3) of a cloud
of two-level atoms as described by the time-evolution
equations (1a) and (1b), but applicable more generally
for the calculation of two-time correlation functions in
long-range spin models. The atomic cloud we consider is
three-dimensional, and the atom–atom interactions are
long-ranged, which makes the system particularly suit-
able for applying a simulation method based on the qua-
siclassical time-evolution of discrete phase-space points
[26, 27]. This method, however, is formulated for uni-
tarily evolving quantum spin systems, and gives access
to equal-time correlation functions, but not to two-time
correlations. In Sec. A we rewrite the quantities needed
for calculating the fluorescence spectrum in a form that
is more amenable to a semi-classical time-evolution. In
Secs. B and C we derive semi-classical equations of mo-
tion for driven-dissipative, non-unitarily evolving quan-
tum spin systems. In Sec. D we introduce a discrete phase
space representation and apply it to the calculation of the
two-time correlation functions that are required for ob-
taining the fluorescence spectrum. The resulting novel
simulation scheme is benchmarked against exact results
in Sec. E.

A. Quantum regression

We extract the spectral properties of the radiated light
in direction n̂ from the first order optical coherence
g(1)(t, τ) (4) by evaluating the expression for the spec-
trum (3), which can be rewritten as

S(ω) = lim
T→∞

lim
t→+∞

∫ T

−T
dτe−iωτ

×
[
g(1)(t, τ)Θ(τ) + g(1)(−t, τ)Θ(−τ)

]
, (A.1)

where Θ denotes the Heaviside step function. g(−t, τ)
is a short-hand notation for flipping the sign of t of the
unitary terms in (1b) while keeping the dissipative ones
unchanged, which corresponds to time-reversing the dy-
namics of the total system (two-level atoms plus photons)
before eliminating the photonic field. Taking the limit
t→ +∞ inside the integral, we see that limt→∞ g(1)(t, τ)
and limt→∞ g(1)(−t, τ) are the two limits required for
calculating S. Here, for being definite, we discuss the
first case only, as the second can be treated analogously.
According to Eqs. (4) and (5), the optical coherence
g(1)(t, τ) can be expressed in terms of two-time correla-
tions of Pauli spin operators, and hence our main ob-
ject of interest will be limt→∞

〈
σai (t)σbj(t+ τ)

〉
for all

a, b ∈ {x, y, z}.

Making use of the quantum regression theorem [35, 36],
we can write the two-time spin–spin correlation as〈

σai (t)σbj(t+ τ)
〉

= Tr
{
V (t+ τ, t) [(V (t, 0)ρ)σai ]σbj

}
,

(A.2)
where ρ is the initial state and V (t, t0) denotes the time-
evolution operator corresponding to the equations of mo-
tion (1a) and (1b). The coefficients of these differential
equations do not explicitly depend on time, which im-
plies V (t + t0, t0) = V (t, 0) for all t and t0. Under this
evolution and in the limit t→∞, we expect ρ to evolve
towards a steady state, which we denote by

ρss = lim
t→∞

V (t, 0)ρ. (A.3)

This allows us to write the long-time limit of the two-time
correlation function as

lim
t→∞

〈
σai (t)σbj(t+ τ)

〉
= Tr

[
σbjV (τ, 0) (ρssσ

a
i )
]
. (A.4)

The nontrivial object in this expression is the time-
evolved operator V (τ, 0) (ρssσ

a
i ), which we are going to

calculate in Sec. D.

B. Time-evolution equations

As a starting point for calculating V (τ, 0) (ρssσ
a
i ) we

need the steady state density operator ρss, which we cal-
culate approximately by a method described in the fol-
lowing. This method is applicable to arbitrary N -spin
trace-1 operators A1...N under the dynamics generated
by a Lindblad operator. Starting from the initial density
operator, A1...N = ρ, will allow us to obtain ρss after suf-
ficiently long evolution times. Other choices of A1...N will
be used to calculate the time-evolution of other trace-1
operators that appear when calculating V (τ, 0) (ρssσ

a
i ) in

Sec. D.
The propagator V that induces the evolution equations

(1a) and (1b) can be written as a Lindblad differential
equation

i∂tA1...N = LA1...N , (B.1)

where the Lindblad operator

L =
∑
i

Li +
∑
ij

Lij (B.2)

consists of on-site terms

LiA1...N = −∆0

2
[σzi ,A1...N ]

+
Ω0

2

[
e−ik0·riσ−i + eik0·riσ+

i ,A1...N

]
(B.3)

and pair interactions

LijA1...N = ∆ij

[
σ+
i σ
−
j ,A1...N

]
+

iγij
(
σ−j A1...Nσ

+
i − 1

2σ
+
i σ
−
j A1...N − 1

2A1...Nσ
+
i σ
−
j

)
,

(B.4)
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with

∆ij = −Γ

2


cos (k0|ri − rj |)
k0|ri − rj |

for i 6= j,

0 for i = j,
(B.5)

γij = Γ


sin (k0|ri − rj |)
k0|ri − rj |

for i 6= j,

1 for i = j,
(B.6)

and Γ = d2k30/(2π~ε0).

Taking partial traces on both sides of (B.2) one
obtains, in the spirit of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy [37], a set of cou-
pled evolution equations,

i∂tAi = LiAi +
∑
m6=i

Trm LimAim, (B.7a)

i∂tAij = (Li + Lj + Lij) Aij

+
∑
m 6=i,j

Trm (Lim + Ljm) Aijm, (B.7b)

where the reduced operators

Ai = Tr{k 6=i}A1...N , Aij = Tr{k 6=i,j}A1...N , (B.8)

are defined as partial traces over all sites except the in-
dexed ones. Superscripts α1 . . . αN of A are in the fol-
lowing suppressed. By means of a cluster expansion we
separate the reduced A operators into product and con-
nected parts,

Aij = AiAj + Cij , (B.9a)

Aijm = AiAjAm + AiCjm + AjCim + AmCij + Cijm,
(B.9b)

which implicitly defines the connected operators C . Sub-
stituting these definitions into (B.7a) and (B.7b), we

rewrite the first two equations of the BBGKY hierarchy
as

i∂tAi = LiAi +
∑
m 6=i

Tr
[
LSim(Cim + AiAm)

]
, (B.10a)

i∂tCij = (Li + Lj)Cij + LSij(Cij + AiAj) (B.10b)

−Ai Tri
[
LSij(Cij + AiAj)

]
−Aj Trj

[
LSij(Cij + AiAj)

]
+
∑
m 6=i,j

Trm
[
LSim(AiCjm + AmCij + Cijm)

]
+
∑
m 6=i,j

Trm
[
LSjm(AjCim + AmCij + Cijm)

]
,

where LSij = Lij +Lji. Equation (B.10b) contains three-
spin connected contributions Cijm, the time-evolution of
which depends on four-spin terms, and so on. To turn
this into a numerically tractable problem, we truncate
the BBGKY hierarchy at second order by neglecting the
terms Cijm in (B.10b). This is the main approximation
made in the numerical scheme, and it gives good results
whenever genuine three- and more-spin connected con-
tributions are negligible.

C. Time-evolution of the Pauli expansion coefficients

To bring the resulting truncated operator equations
into a numerically tractable form, we expand all opera-
tors in terms of Pauli spin operators,

Ai =
1

2
(1+ ai · σi) , Cij =

1

4

∑
a,b∈{x,y,z}

cabij σ
a
i σ

b
j .

(C.1)
Inserting these expansions into (B.10a) and the truncated
version of (B.10b), and making use of Lindblad equations
(B.1)–(B.4), we obtain time-evolution equations for the
Pauli expansion coefficients,

∂ta
a
i =

∑
b

abi
{
−∆0ε

zba + Ω0

[
εxba cos(−k0 · ri) + εyba sin(−k0 · ri)

]}
− Γ

[
1
2a
a
i (1 + δza) + δza

]
+
∑
b

∑
m 6=i

{
εxba

[
∆im

(
abia

x
m + cbxim

)
− 1

2γim

(
abia

y
m + cbyim

)]
+ εyba

[
∆im

(
abia

y
m + cbyim

)
+ 1

2γim
(
abia

x
m + cbxim

)]}
(C.2)

and

∂tc
ab
ij =

∑
c

ccbij {−∆0ε
zca + Ω0 [cos(−k0 · ri)εxca + sin(−k0 · ri)εyca]} (C.3)

+
∑
c

cacij
{
−∆0ε

zcb + Ω0

[
cos(−k0 · rj)εxcb + sin(−k0 · rj)εycb

]}
− Γcabij

(
1 +

δaz + δbz

2

)
− γij

∑
c,d

(
ccdij + acia

d
j

) (
εxcaεdxb + εycaεdyb

)
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+
∑
c

ccbij
∑
m 6=ij

[
axm

(
∆imε

xca +
γim
2
εyca

)
+ aym

(
∆imε

yca − γim
2
εxca

)]
+
∑
c

cacij
∑
m 6=ij

[
axm

(
∆jmε

xcb +
γjm

2
εycb

)
+ aym

(
∆jmε

ycb − γjm
2
εxcb

)]
+
∑
c

acj

[
δax

(
∆ijε

xcb +
γij
2
εycb

)
+ δay

(
∆ijε

ycb − γij
2
εxcb

)]
+
∑
c

aci

[
δbx
(

∆ijε
xca +

γij
2
εyca

)
+ δby

(
∆ijε

yca − γij
2
εxca

)]
−
∑
c

abj

[(
ccxij + acia

x
j

) (
∆ijε

xca +
γij
2
εyca

)
+
(
ccyij + acia

y
j

) (
∆ijε

yca − γij
2
εxca

)]
−
∑
c

aai

[(
cxcij + axi a

c
j

) (
∆ijε

xcb +
γij
2
εycb

)
+
(
cycij + ayi a

c
j

) (
∆ijε

ycb − γij
2
εxcb

)]
+
∑
c

aci
∑
m6=ij

[(
cxbmj∆im − cybmj

γim
2

)
εxca +

(
cybmj∆im + cxbmj

γim
2

)
εyca

]
+
∑
c

acj
∑
m 6=ij

[(
caxim∆jm − cayim

γjm
2

)
εxcb +

(
cayim∆jm + caxim

γjm
2

)
εycb

]
+
∑
c

∑
m6=ij

[(
ccbxijm∆im − ccbyijm

γim
2

)
εxca +

(
ccbyijm∆im + ccbxijm

γim
2

)
εyca

]
+
∑
c

∑
m6=ij

[(
cacxijm∆jm − cacyijm

γjm
2

)
εxcb +

(
cacyijm∆jm + cacyijm

γjm
2

)
εycb

]
.

These equations form a set of coupled ordinary differ-
ential equations, which can be integrated by standard
numerical methods.

We calculate the steady-state density operator ρss by
setting to zero the left-hand sides of (C.2) and (C.3), and
numerically solving the resulting algebraic equations by a
standard Newton-Krylov solver. The stationary values of
the a- and c-coefficients encode the required information
on ρss.

D. Calculation of V (τ, 0) (ρssσ
a
i )

Starting from the thus obtained steady-state density
operator ρss, we expand ρssσ

a
i in terms of so-called phase

point operators, rewrite the result in terms of trace-1 op-
erators, and then use again the time-evolution equations
of Secs. B and C in order to obtain V (τ, 0) (ρssσ

a
i ).

The discrete phase-space representation of a single
spin-1/2 degree of freedom as introduced by Wootters
[25] is based on a discrete phase space

Γ = {(0, 0), (0, 1), (1, 0), (1, 1)} (D.1)

consisting of four points, each of which has an associ-
ated three-vector, r(0,0) = (1, 1, 1), r(0,1) = (−1,−1, 1),
r(1,0) = (1,−1,−1), and r(1,1) = (−1, 1,−1). To each
phase space point α ∈ Γ one assigns a so-called phase
point operator

Aα = 1
2 (1+ rα · σ), (D.2)

where σ = (σx, σy, σz) is the vector of Pauli operators.
The phase point operators form a basis, and any operator
on C2 can be expressed as a linear combination of the four
operators Aα. Similarly one could expand an operator on
the tensor product Hilbert space (C2)⊗N of N spin-1/2
degrees of freedom in the corresponding tensor product
basis of Aα. Here we follow a different approach and
do this expansion only for the ith factor of the product
space, which yields 1

ρssσ
a
i =

1

2

∑
αi

Tri [Aαiρssσ
a
i ]Aαi , (D.3)

where Tri denotes a partial trace over the ith factor of the
tensor product Hilbert space. By elementary spin alge-
bra, the coefficients of this expansion, which are operator-

1 It turns out to be advantageous to expand in an overcom-
plete basis, using the phase point operators corresponding to
r′

(0,0)
= (1,−1, 1), r′

(0,1)
= (−1, 1, 1), r′

(1,0)
= (1, 1,−1),

r′
(1,1)

= (−1,−1,−1), in addition to those defined above. While

such an expansion gives identical results on an exact level, dif-
ferences arise when approximating the time-evolution. Avoiding
the expansion altogether, and writing ρssσai directly in terms of
trace-1 operators, is also feasible, but again turned out to per-
form worse than the scheme described here.
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valued and act on (C2)⊗(N−1), can be written as

2 Tri [Aαi
ρssσ

a
i ] = Tri

[
σai (1i +

∑
c

rcαi
σci )ρss

]
= Tri (σai ρss) + raαi

Tri (ρss) + i
∑
cd

εacdrcαi
Tri
(
σdi ρss

)
.

(D.4)

Next we rewrite (D.4) as a linear combination of trace-1
operators, such that the time-evolution scheme of Secs. B
and C can be applied to each of those operators. To this
purpose it is convenient to (partially) expand operators
in the tensor product basis of Pauli spin operators, where
we denote the expansion coefficients by

sai = Tr(σai ρss), sabij = Tr(σai σ
b
jρss). (D.5)

Starting from (D.4) we can write 2

2 Tri (Aαiρssσ
a
i ) = (1+sai )ρ̃ass,6 i+i

∑
cd

εacdrcαi
(1+sdi )ρ̃

d
ss,6 i

+
[
(raαi
− 1)− i

∑
cd

rcαi
εacd

]
ρss,6 i, (D.6)

where we have defined

ρss,6 i = Tri ρss, ρ̃ass,6 i =
Tri [(1+ σai )ρss]

1 + sai
, (D.7)

both of which are trace-1 operators on (C2)⊗(N−1).
Those operators can also be expanded in terms of Pauli
spin operators, and the corresponding expansion coeffi-
cients can be expressed in terms of the coefficients (D.5)
of ρss,

s̃ak,ak = Tr
(
σakk ρ̃ass, 6 i

)
=
sakk + saakik

1 + sai
, (D.8a)

s̃
ajak,a
jk = Tr

(
σ
aj
j σ

ak
k ρ̃ass,6 i

)
=
s
ajak
jk + s

aajak
ijk

1 + sai
, (D.8b)

and so on. Inserting (D.3) and (D.6) into (A.4) we obtain

lim
t→∞

〈
σ+
i (t)σ−j (t+ τ)

〉
=

1

4

∑
αi

{
(1 + sxi )(1− rzαi

)(ax;xj;αi
(τ)− iay;xj;αi

(τ)) + (1 + syi )(1− rzαi
)(ay;yj;αi

(τ) + iax;yj;αi
(τ))

+ (1 + szi )
[
rxαi

ax;zj;αi
(τ) + ryαi

ay;zj;αi
(τ) + i(ryαi

ax;zj;αi
(τ)− rxαi

ay;zj;αi
(τ))

]
+ (rzαi

− 1)
[
axj;αi

(τ) + ayj;αi
(τ) + i(axj;αi

(τ)− ayj;αi
(τ))

]}
(D.9)

with

ab;aj;αi
(τ) = Tr

[
σbjV (τ, 0)(ρ̃ass, 6 iAαi

)
]
, (D.10a)

abj;αi
(τ) = Tr

[
σbjV (τ, 0)(ρss, 6 iAαi

)
]
. (D.10b)

According to (D.10a) and (D.10b), in order to obtain the
desired two-time correlation function (D.9), we need to
calculate for each i and each phase space operator Aαi

the time-evolution of four operators, namely ρ̃ass, 6 iAαi
for

a ∈ {x, y, z}, and ρss,6 iAαi . We do this by making use of
the method developed in Secs. B and C, letting A1...N in
(B.1) take the role of each of the four mentioned opera-
tors. The computational cost of the method scales like
3N(3N − 1)/2 with the system size N . Applying it to
the four trace-1 operators, the eight phase point opera-
tors, and the N lattice sites required in (D.9), (D.10a),

2 We tested other ways of expressing (D.4) in terms of trace-1
operators, but for our purposes none of them turned out to be
advantageous in terms of accuracy or computational cost.

and (D.10b), results in an overall computational cost that
scales asymptotically like N3.

E. Benchmarking against exact results

The accuracy of the proposed simulation method is
tested by benchmarking the fluorescence spectrum S
against exact results. Up to N = 7 spins (atoms) could
be dealt with exactly by using the “Quantum Toolbox
in Python” [38, 39], a module tailored to simulate the
dynamics of open quantum systems and especially those
of quantum optics.

As shown in Fig. E.1 for Rabi frequency Ω0 = 20Γ, for
densities up to ρ/k3 = 0.1 our simulation results are in
very good agreement with exact results, for the main as
well as the secondary Mollow sidebands. For larger den-
sities (ρ/k3 = 0.3 in that same figure), when the coupling
gets stronger and higher order correlations are expected
to become more relevant, the two spectra exhibit more
substantial deviations, although the agreement is still ac-
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FIG. E.1. Fluorescence spectrum for a cloud of N = 7 atoms,
driven at Ω0 = 20Γ at resonance (∆ = 0), and for densities
ρ/k3 = 0.03 (black), 0.1 (red) and 0.3 (blue). Solid lines
refer to exact results (E), dash-dotted lines to the simulation
technique described in this Supplemental Material (N). The
left inset shows, on a linear scale, a main Mollow sideband,
the right inset magnifies one of the novel secondary sidebands.

ceptable. Other values of the driving frequency Ω0 lead
to a similar degree of agreement (not shown).

Besides the spectra, we also benchmarked other rele-
vant quantities, including the steady state ρss calculated
according to Sec. C, as well as the the two-time correla-
tions evolved from the latter. All show very good agree-
ment for densities up to ρ/k3 ∼ 0.3.
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